Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues.
نویسندگان
چکیده
BACKGROUND AND AIMS The great potential of using nanodevices as delivery systems to specific targets in living organisms was first explored for medical uses. In plants, the same principles can be applied for a broad range of uses, in particular to tackle infections. Nanoparticles tagged to agrochemicals or other substances could reduce the damage to other plant tissues and the amount of chemicals released into the environment. To explore the benefits of applying nanotechnology to agriculture, the first stage is to work out the correct penetration and transport of the nanoparticles into plants. This research is aimed (a) to put forward a number of tools for the detection and analysis of core-shell magnetic nanoparticles introduced into plants and (b) to assess the use of such magnetic nanoparticles for their concentration in selected plant tissues by magnetic field gradients. METHODS Cucurbita pepo plants were cultivated in vitro and treated with carbon-coated Fe nanoparticles. Different microscopy techniques were used for the detection and analysis of these magnetic nanoparticles, ranging from conventional light microscopy to confocal and electron microscopy. KEY RESULTS Penetration and translocation of magnetic nanoparticles in whole living plants and into plant cells were determined. The magnetic character allowed nanoparticles to be positioned in the desired plant tissue by applying a magnetic field gradient there; also the graphitic shell made good visualization possible using different microscopy techniques. CONCLUSIONS The results open a wide range of possibilities for using magnetic nanoparticles in general plant research and agronomy. The nanoparticles can be charged with different substances, introduced within the plants and, if necessary, concentrated into localized areas by using magnets. Also simple or more complex microscopical techniques can be used in localization studies.
منابع مشابه
Nanotechnology application in cancer treatment
Chemotherapy has been the main known treatment for cancer diseases. However, its achievement rate remains low, mainly because of the restricted accessibility of drugs to the tumor tissue, their painful toxicity, and development of multi-drug resistance. In recent years, either better understanding of tumor biology or development of the ever-growing field of nanotechnology has proposed new treat...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملO-5: Preparation of Multi-Component Drug Delivery Systems
Background: Despite global interest, the development of single step processes for the preparation of effective drug delivery systems still faces numerous challenges. There is great demand for processing methods that are efficient, flexible, scalable and economical for the generation of wide range of encapsulated structures. Over the past few decades, electrohydrodynamic (EHD) processing has rec...
متن کاملMicrowave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts
In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2008